تبلیغات
دنیای ریاضی - مثلث خیام - پاسكال و فراكتال‌ها
 
دنیای ریاضی
ریاضیات علم آموختن اندیشیدن است نه آموختن اندیشه ها
پیرامون وبلاگ حسینی


سلام
محمد حسینی هستم.دانش آموز سال سوم رشته ریاضی دبیرستان امیرکبیر فراشبند
سعی کردم تو این وب جدید ترین مطالب ریاضی رو قرار بدم
امید وارم بهره کافی رو ببرید.
زنده باد فراشبند

مدیر وبلاگ : دانش آموزان دبیرستان امیرکبیر
پرسمان
لطفا نظر خود را درباره ی وبلاگ ارائه دهید.









مقدمه

حتماً با «مثلث خیام – پاسكال» آشنا هستید:
 

حال آیا در مورد «فراكتال»‌ها (معادل فارسی آن «برخال» است)‌ چیزی شنیده‌اید. در این مورد در كتاب‌های درسی ریاضی‌اتان مطالبی گفته شده است.

در واقع «برخال»‌ها موجوداتی هندسی‌اند كه هرچه آن را از نزدیك نگاه كنیم شبیه شكل نخستین است مانند: «گل كلم». به این اشیا‌ اصطلاحاً «خودمتشابه» گویند.

 

ایده‌ی «خود متشابه» در اصل توسط «لایبنیتس» بسط داده شد. او حتی بسیاری از جزئیات را حل کرد. در سال ۱۸۷۲ «کارل وایرشتراس» مثالی از تابعی را پیدا کرد با ویژگی‌های غیربصری که در همه‌جا پیوسته بود ولی در هرجا مشتق‌پذیر نبود. گراف ‌این تابع اکنون «برخال» نامیده می‌شود.

در سال ۱۹۰۴ «هلگه فون کخ» به‌همراه خلاصه‌ای از «تعریف تحلیلی وایرشتراس»، تعریف هندسی‌تری از تابع متشابه ارائه داد که حالا به «برفدانه کخ» معروف است. در سال ۱۹۱۵ «واکلو سرپینسکی» مثلث‌اش را و سال بعد فرش‌اش (برخالی) را ساخت.

‌ایده‌ی «منحنی‌های خودمتشابه» توسط «پاول پیر لوی» مطرح شد او در مقاله‌اش در سال ۱۹۳۸ با عنوان «سطح یا منحنی‌های فضایی» و «سطوحی شامل بخش‌های متشابه نسبت به کل» منحنی برخالی جدیدی را توصیف کرد.

منحنی «لوی سی. گئورگ کانتور»مثالی از زیرمجموعه‌های خط حقیقی با ویژگی‌های معمول ارائه داد‌. این «مجموعه‌های کانتور» اکنون به‌عنوان«برخال» شناخته می‌شوند.

اواخر قرن نوزدهم و اوایل قرن بیستم «توابع تکرار شونده در سطح پیچیده» توسط «هانری پوانکاره»،«فلیکس کلاین»، «پیر فاتو» و «گاستون جولیا» شناخته شده بودند. با ‌این وجود بدون کمک گرافیک کامپیوتری آن‌ها نسبت به نمایش زیبایی بسیاری از اشیایی که کشف کرده بودند، فاقد معنی بودند.
در سال 1960 «بنوا مندلبرو» تحقیقاتی را در شناخت خودمتشابه‌ای طی مقاله‌ای با عنوان «طول ساحل بریتانیا چقدر است؟ خود متشابه‌ای آماری و بعد کسری» آغاز کرد. ‌این کارها براساس کارهای پیشین «ریچاردسون» استوار بود.
در سال ۱۹۷۵ «مندلبروت» جهت مشخص کردن شیئی که بعد «هاوسدورف بیسکویچ» آن بزرگ‌تر از بعد توپولوژیک است کلمه‌ی «برخال» را ‌ایجاد کرد.
او‌ این تعریف ریاضی را از طریق شبیه‌سازی خاص کامپیوتری تشریح کرد.

 

nمثلث خیام - پاسكال

حال با این توضیح مختصر در مورد برخال‌ها برمی‌گردیم به «مثلث خیام – پاسكال».

در مورد این مثلث زیاد شنیده‌ایم از جمله در مورد كاربرد فراوانش در نظریه‌ی اعداد و تركیبیات.

حال می‌خواهم یك «برخال» ساده را در این مثلث به شما نشان دهم. موضوعی كه باعث می‌شود این مثلث جایی را نیز در دنیای برخال‌ها – یعنی سیستم‌های دینامیكی – پیدا كند.

مسأله خیلی ساده است، تمام اعداد زوج را در «مثلث خیام – پاسكال» پاك كنید، آن‌چه باقی می‌ماند برخالی معروف است با نام «مثلث سرپینسكی»:





آمار وبلاگ
  • کل بازدید : 205232
  • بازدید امروز :432
  • بازدید دیروز :364
  • بازدید این ماه : 3967
  • بازدید ماه قبل : 2638
  • تعداد نویسندگان :
  • تعداد کل پست ها : 764
  • آخرین بازدید :
  • آخرین بروز رسانی :